前言

        一直以来上位软件比如C++等和西门子等其他品牌PLC之间的数据交换都是大家比较头疼的问题,尤其是C++上位软件程序员。传统的方法一般有OPC、Socket 等,直到LibModbus 开源库出现后这种途径对程序袁来说又有了新的选择。

Modbus简介

Modbus特点

        1 )使用简单,利用MUDBUS库文件简单的几条指令就能实现与智能仪表,变频器,打印机等设备进行通讯,且无需加其他硬件上的成本MODBUS总线广泛应用于仪器仪表、智能高低压电器、变送器、可编程控制器、人机界面、变频器、现场智能设备等诸多领域。MODBUS与其他的现场总线和工业网络相比有以下几个显著特点。

        2)标准、开放:用户可以免费放心的使用

        MODBUS协议,不用缴纳许可费用,不会涉及侵犯知识产权。目前支持MODBUS的厂一家超过400家,支持MODBUS的产品超过600种。在中国,MODBUS已经成为国家标准GB/T19582-2008。据不完全统 计:截止到2007年MODBUS的节点安装数量已经超过了1000万个。

        3)应用广泛:凡MODBUS协议设备具有RS232/485接口的都可以使用本产品实现与现场总线PROFIBUS的互连。如:具有MODBUS协议接口的变频器、智能高低压电器、电机启动保护装置、电量测量装置、智能现场测量设备、各种变送器及仪表等。

        4)MODBUS可以支持较多类型的电气接口:MODBUS 总线协议采用主站查询从站的方式,物理接口可以是RS232、RS485、RS422、RJ45,还可以在各种介质上传送,如双绞线、光纤、无线射频等。

        5)MODBUS的帧格式较为简单、紧凑,格式规范,易于传输,通俗易懂。用户使用容易,厂商开发简单。用户不必了解PROFIBUS和MODBUS技术细节,只需参考说明手册及提供的应用实例,按要求完成配置,不需要复杂的编程,即可在短时间内实现设备间的连接通信。

        6)透明通信:用户可以依照PROFIBUS通信数据区和MODBUS通信数据区的映射关系,实现PROFIBUS到MODBUS之间的数据透明通信。

LibModbus库下载

https://libmodbus.org/icon-default.png?t=N7T8https://libmodbus.org/

https://gitcode.com/stephane/libmodbus/overview?utm_source=csdn_github_accelerator&isLogin=1icon-default.png?t=N7T8https://gitcode.com/stephane/libmodbus/overview?utm_source=csdn_github_accelerator&isLogin=1https://github.com/stephane/libmodbusicon-default.png?t=N7T8https://github.com/stephane/libmodbushttps://download.csdn.net/download/lzc881012/88695801icon-default.png?t=N7T8https://download.csdn.net/download/lzc881012/88695801

LibModbus库Windows版本的编译


1、进入到libmodbus\src\win32文件夹下。
2、双击configure.js文件进行编译,成功后会弹出编译完成窗口,点击关闭。
3、然后在双击modbus-9.sln通过VS打开项目,打开项目完成后编译即可。
4、编译完成后libmodbus\src\win32文件夹下就会出现modbus.dll和modbus.lib两个文件。

  1. 将上述步骤中生成的modbus.lib文件和libmodbus\src中所有的.h文件通过VS包含到自己的项目中即可。
  2. 在程序中包含libModbus/modbus.h一个头文件即可。
  3. 将上述步骤在生成的modbus.dll放到你的项目生成目录下,例如Debug/Release目录下。

LibModbus库modbus.h头文件

/*
 * Copyright © 2001-2013 Stéphane Raimbault <stephane.raimbault@gmail.com>
 *
 * SPDX-License-Identifier: LGPL-2.1+
 */

#ifndef MODBUS_H
#define MODBUS_H

/* Add this for macros that defined unix flavor */
#if (defined(__unix__) || defined(unix)) && !defined(USG)
#include <sys/param.h>
#endif

#ifndef _MSC_VER
#include <stdint.h>
#else
#include "stdint.h"
#endif

#include "modbus-version.h"

#if defined(_MSC_VER)
# if defined(DLLBUILD)
/* define DLLBUILD when building the DLL */
#  define MODBUS_API __declspec(dllexport)
# else
#  define MODBUS_API __declspec(dllimport)
# endif
#else
# define MODBUS_API
#endif

#ifdef  __cplusplus
# define MODBUS_BEGIN_DECLS  extern "C" {
# define MODBUS_END_DECLS    }
#else
# define MODBUS_BEGIN_DECLS
# define MODBUS_END_DECLS
#endif

MODBUS_BEGIN_DECLS

#ifndef FALSE
#define FALSE 0
#endif

#ifndef TRUE
#define TRUE 1
#endif

#ifndef OFF
#define OFF 0
#endif

#ifndef ON
#define ON 1
#endif

/* Modbus function codes */
#define MODBUS_FC_READ_COILS                0x01
#define MODBUS_FC_READ_DISCRETE_INPUTS      0x02
#define MODBUS_FC_READ_HOLDING_REGISTERS    0x03
#define MODBUS_FC_READ_INPUT_REGISTERS      0x04
#define MODBUS_FC_WRITE_SINGLE_COIL         0x05
#define MODBUS_FC_WRITE_SINGLE_REGISTER     0x06
#define MODBUS_FC_READ_EXCEPTION_STATUS     0x07
#define MODBUS_FC_WRITE_MULTIPLE_COILS      0x0F
#define MODBUS_FC_WRITE_MULTIPLE_REGISTERS  0x10
#define MODBUS_FC_REPORT_SLAVE_ID           0x11
#define MODBUS_FC_MASK_WRITE_REGISTER       0x16
#define MODBUS_FC_WRITE_AND_READ_REGISTERS  0x17

#define MODBUS_BROADCAST_ADDRESS    0

/* Modbus_Application_Protocol_V1_1b.pdf (chapter 6 section 1 page 12)
 * Quantity of Coils to read (2 bytes): 1 to 2000 (0x7D0)
 * (chapter 6 section 11 page 29)
 * Quantity of Coils to write (2 bytes): 1 to 1968 (0x7B0)
 */
#define MODBUS_MAX_READ_BITS              2000
#define MODBUS_MAX_WRITE_BITS             1968

/* Modbus_Application_Protocol_V1_1b.pdf (chapter 6 section 3 page 15)
 * Quantity of Registers to read (2 bytes): 1 to 125 (0x7D)
 * (chapter 6 section 12 page 31)
 * Quantity of Registers to write (2 bytes) 1 to 123 (0x7B)
 * (chapter 6 section 17 page 38)
 * Quantity of Registers to write in R/W registers (2 bytes) 1 to 121 (0x79)
 */
#define MODBUS_MAX_READ_REGISTERS          125
#define MODBUS_MAX_WRITE_REGISTERS         123
#define MODBUS_MAX_WR_WRITE_REGISTERS      121
#define MODBUS_MAX_WR_READ_REGISTERS       125

/* The size of the MODBUS PDU is limited by the size constraint inherited from
 * the first MODBUS implementation on Serial Line network (max. RS485 ADU = 256
 * bytes). Therefore, MODBUS PDU for serial line communication = 256 - Server
 * address (1 byte) - CRC (2 bytes) = 253 bytes.
 */
#define MODBUS_MAX_PDU_LENGTH              253

/* Consequently:
 * - RTU MODBUS ADU = 253 bytes + Server address (1 byte) + CRC (2 bytes) = 256
 *   bytes.
 * - TCP MODBUS ADU = 253 bytes + MBAP (7 bytes) = 260 bytes.
 * so the maximum of both backend in 260 bytes. This size can used to allocate
 * an array of bytes to store responses and it will be compatible with the two
 * backends.
 */
#define MODBUS_MAX_ADU_LENGTH              260

/* Random number to avoid errno conflicts */
#define MODBUS_ENOBASE 112345678

/* Protocol exceptions */
enum {
    MODBUS_EXCEPTION_ILLEGAL_FUNCTION = 0x01,
    MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS,
    MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE,
    MODBUS_EXCEPTION_SLAVE_OR_SERVER_FAILURE,
    MODBUS_EXCEPTION_ACKNOWLEDGE,
    MODBUS_EXCEPTION_SLAVE_OR_SERVER_BUSY,
    MODBUS_EXCEPTION_NEGATIVE_ACKNOWLEDGE,
    MODBUS_EXCEPTION_MEMORY_PARITY,
    MODBUS_EXCEPTION_NOT_DEFINED,
    MODBUS_EXCEPTION_GATEWAY_PATH,
    MODBUS_EXCEPTION_GATEWAY_TARGET,
    MODBUS_EXCEPTION_MAX
};

#define EMBXILFUN  (MODBUS_ENOBASE + MODBUS_EXCEPTION_ILLEGAL_FUNCTION)
#define EMBXILADD  (MODBUS_ENOBASE + MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS)
#define EMBXILVAL  (MODBUS_ENOBASE + MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE)
#define EMBXSFAIL  (MODBUS_ENOBASE + MODBUS_EXCEPTION_SLAVE_OR_SERVER_FAILURE)
#define EMBXACK    (MODBUS_ENOBASE + MODBUS_EXCEPTION_ACKNOWLEDGE)
#define EMBXSBUSY  (MODBUS_ENOBASE + MODBUS_EXCEPTION_SLAVE_OR_SERVER_BUSY)
#define EMBXNACK   (MODBUS_ENOBASE + MODBUS_EXCEPTION_NEGATIVE_ACKNOWLEDGE)
#define EMBXMEMPAR (MODBUS_ENOBASE + MODBUS_EXCEPTION_MEMORY_PARITY)
#define EMBXGPATH  (MODBUS_ENOBASE + MODBUS_EXCEPTION_GATEWAY_PATH)
#define EMBXGTAR   (MODBUS_ENOBASE + MODBUS_EXCEPTION_GATEWAY_TARGET)

/* Native libmodbus error codes */
#define EMBBADCRC  (EMBXGTAR + 1)
#define EMBBADDATA (EMBXGTAR + 2)
#define EMBBADEXC  (EMBXGTAR + 3)
#define EMBUNKEXC  (EMBXGTAR + 4)
#define EMBMDATA   (EMBXGTAR + 5)
#define EMBBADSLAVE (EMBXGTAR + 6)

extern const unsigned int libmodbus_version_major;
extern const unsigned int libmodbus_version_minor;
extern const unsigned int libmodbus_version_micro;

typedef struct _modbus modbus_t;

typedef struct _modbus_mapping_t {
    int nb_bits;
    int start_bits;
    int nb_input_bits;
    int start_input_bits;
    int nb_input_registers;
    int start_input_registers;
    int nb_registers;
    int start_registers;
    uint8_t *tab_bits;
    uint8_t *tab_input_bits;
    uint16_t *tab_input_registers;
    uint16_t *tab_registers;
} modbus_mapping_t;

typedef enum
{
    MODBUS_ERROR_RECOVERY_NONE          = 0,
    MODBUS_ERROR_RECOVERY_LINK          = (1<<1),
    MODBUS_ERROR_RECOVERY_PROTOCOL      = (1<<2)
} modbus_error_recovery_mode;

MODBUS_API int modbus_set_slave(modbus_t* ctx, int slave);
MODBUS_API int modbus_get_slave(modbus_t* ctx);
MODBUS_API int modbus_set_error_recovery(modbus_t *ctx, modbus_error_recovery_mode error_recovery);
MODBUS_API int modbus_set_socket(modbus_t *ctx, int s);
MODBUS_API int modbus_get_socket(modbus_t *ctx);

MODBUS_API int modbus_get_response_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec);
MODBUS_API int modbus_set_response_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec);

MODBUS_API int modbus_get_byte_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec);
MODBUS_API int modbus_set_byte_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec);

MODBUS_API int modbus_get_indication_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec);
MODBUS_API int modbus_set_indication_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec);

MODBUS_API int modbus_get_header_length(modbus_t *ctx);

MODBUS_API int modbus_connect(modbus_t *ctx);
MODBUS_API void modbus_close(modbus_t *ctx);

MODBUS_API void modbus_free(modbus_t *ctx);

MODBUS_API int modbus_flush(modbus_t *ctx);
MODBUS_API int modbus_set_debug(modbus_t *ctx, int flag);

MODBUS_API const char *modbus_strerror(int errnum);

MODBUS_API int modbus_read_bits(modbus_t *ctx, int addr, int nb, uint8_t *dest);
MODBUS_API int modbus_read_input_bits(modbus_t *ctx, int addr, int nb, uint8_t *dest);
MODBUS_API int modbus_read_registers(modbus_t *ctx, int addr, int nb, uint16_t *dest);
MODBUS_API int modbus_read_input_registers(modbus_t *ctx, int addr, int nb, uint16_t *dest);
MODBUS_API int modbus_write_bit(modbus_t *ctx, int coil_addr, int status);
MODBUS_API int modbus_write_register(modbus_t *ctx, int reg_addr, const uint16_t value);
MODBUS_API int modbus_write_bits(modbus_t *ctx, int addr, int nb, const uint8_t *data);
MODBUS_API int modbus_write_registers(modbus_t *ctx, int addr, int nb, const uint16_t *data);
MODBUS_API int modbus_mask_write_register(modbus_t *ctx, int addr, uint16_t and_mask, uint16_t or_mask);
MODBUS_API int modbus_write_and_read_registers(modbus_t *ctx, int write_addr, int write_nb,
                                               const uint16_t *src, int read_addr, int read_nb,
                                               uint16_t *dest);
MODBUS_API int modbus_report_slave_id(modbus_t *ctx, int max_dest, uint8_t *dest);

MODBUS_API modbus_mapping_t* modbus_mapping_new_start_address(
    unsigned int start_bits, unsigned int nb_bits,
    unsigned int start_input_bits, unsigned int nb_input_bits,
    unsigned int start_registers, unsigned int nb_registers,
    unsigned int start_input_registers, unsigned int nb_input_registers);

MODBUS_API modbus_mapping_t* modbus_mapping_new(int nb_bits, int nb_input_bits,
                                                int nb_registers, int nb_input_registers);
MODBUS_API void modbus_mapping_free(modbus_mapping_t *mb_mapping);

MODBUS_API int modbus_send_raw_request(modbus_t *ctx, const uint8_t *raw_req, int raw_req_length);

MODBUS_API int modbus_receive(modbus_t *ctx, uint8_t *req);

MODBUS_API int modbus_receive_confirmation(modbus_t *ctx, uint8_t *rsp);

MODBUS_API int modbus_reply(modbus_t *ctx, const uint8_t *req,
                            int req_length, modbus_mapping_t *mb_mapping);
MODBUS_API int modbus_reply_exception(modbus_t *ctx, const uint8_t *req,
                                      unsigned int exception_code);

/**
 * UTILS FUNCTIONS
 **/

#define MODBUS_GET_HIGH_BYTE(data) (((data) >> 8) & 0xFF)
#define MODBUS_GET_LOW_BYTE(data) ((data) & 0xFF)
#define MODBUS_GET_INT64_FROM_INT16(tab_int16, index) \
    (((int64_t)tab_int16[(index)    ] << 48) + \
     ((int64_t)tab_int16[(index) + 1] << 32) + \
     ((int64_t)tab_int16[(index) + 2] << 16) + \
      (int64_t)tab_int16[(index) + 3])
#define MODBUS_GET_INT32_FROM_INT16(tab_int16, index) ((tab_int16[(index)] << 16) + tab_int16[(index) + 1])
#define MODBUS_GET_INT16_FROM_INT8(tab_int8, index) ((tab_int8[(index)] << 8) + tab_int8[(index) + 1])
#define MODBUS_SET_INT16_TO_INT8(tab_int8, index, value) \
    do { \
        tab_int8[(index)] = (value) >> 8;  \
        tab_int8[(index) + 1] = (value) & 0xFF; \
    } while (0)
#define MODBUS_SET_INT32_TO_INT16(tab_int16, index, value) \
    do { \
        tab_int16[(index)    ] = (value) >> 16; \
        tab_int16[(index) + 1] = (value); \
    } while (0)
#define MODBUS_SET_INT64_TO_INT16(tab_int16, index, value) \
    do { \
        tab_int16[(index)    ] = (value) >> 48; \
        tab_int16[(index) + 1] = (value) >> 32; \
        tab_int16[(index) + 2] = (value) >> 16; \
        tab_int16[(index) + 3] = (value); \
    } while (0)

MODBUS_API void modbus_set_bits_from_byte(uint8_t *dest, int idx, const uint8_t value);
MODBUS_API void modbus_set_bits_from_bytes(uint8_t *dest, int idx, unsigned int nb_bits,
                                       const uint8_t *tab_byte);
MODBUS_API uint8_t modbus_get_byte_from_bits(const uint8_t *src, int idx, unsigned int nb_bits);
MODBUS_API float modbus_get_float(const uint16_t *src);
MODBUS_API float modbus_get_float_abcd(const uint16_t *src);
MODBUS_API float modbus_get_float_dcba(const uint16_t *src);
MODBUS_API float modbus_get_float_badc(const uint16_t *src);
MODBUS_API float modbus_get_float_cdab(const uint16_t *src);

MODBUS_API void modbus_set_float(float f, uint16_t *dest);
MODBUS_API void modbus_set_float_abcd(float f, uint16_t *dest);
MODBUS_API void modbus_set_float_dcba(float f, uint16_t *dest);
MODBUS_API void modbus_set_float_badc(float f, uint16_t *dest);
MODBUS_API void modbus_set_float_cdab(float f, uint16_t *dest);

#include "modbus-tcp.h"
#include "modbus-rtu.h"

MODBUS_END_DECLS

#endif  /* MODBUS_H */

 

LibModbus库Modbus.h头文件

/*
 * Copyright © 2001-2011 Stéphane Raimbault <stephane.raimbault@gmail.com>
 *
 * SPDX-License-Identifier: LGPL-2.1+
 *
 * This library implements the Modbus protocol.
 * http://libmodbus.org/
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <errno.h>
#include <limits.h>
#include <time.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif

#include <config.h>

#include "modbus.h"
#include "modbus-private.h"

/* Internal use */
#define MSG_LENGTH_UNDEFINED -1

/* Exported version */
const unsigned int libmodbus_version_major = LIBMODBUS_VERSION_MAJOR;
const unsigned int libmodbus_version_minor = LIBMODBUS_VERSION_MINOR;
const unsigned int libmodbus_version_micro = LIBMODBUS_VERSION_MICRO;

/* Max between RTU and TCP max adu length (so TCP) */
#define MAX_MESSAGE_LENGTH 260

/* 3 steps are used to parse the query */
typedef enum {
    _STEP_FUNCTION,
    _STEP_META,
    _STEP_DATA
} _step_t;

const char *modbus_strerror(int errnum) {
    switch (errnum) {
    case EMBXILFUN:
        return "Illegal function";
    case EMBXILADD:
        return "Illegal data address";
    case EMBXILVAL:
        return "Illegal data value";
    case EMBXSFAIL:
        return "Slave device or server failure";
    case EMBXACK:
        return "Acknowledge";
    case EMBXSBUSY:
        return "Slave device or server is busy";
    case EMBXNACK:
        return "Negative acknowledge";
    case EMBXMEMPAR:
        return "Memory parity error";
    case EMBXGPATH:
        return "Gateway path unavailable";
    case EMBXGTAR:
        return "Target device failed to respond";
    case EMBBADCRC:
        return "Invalid CRC";
    case EMBBADDATA:
        return "Invalid data";
    case EMBBADEXC:
        return "Invalid exception code";
    case EMBMDATA:
        return "Too many data";
    case EMBBADSLAVE:
        return "Response not from requested slave";
    default:
        return strerror(errnum);
    }
}

void _error_print(modbus_t *ctx, const char *context)
{
    if (ctx->debug) {
        fprintf(stderr, "ERROR %s", modbus_strerror(errno));
        if (context != NULL) {
            fprintf(stderr, ": %s\n", context);
        } else {
            fprintf(stderr, "\n");
        }
    }
}

static void _sleep_response_timeout(modbus_t *ctx)
{
    /* Response timeout is always positive */
#ifdef _WIN32
    /* usleep doesn't exist on Windows */
    Sleep((ctx->response_timeout.tv_sec * 1000) +
          (ctx->response_timeout.tv_usec / 1000));
#else
    /* usleep source code */
    struct timespec request, remaining;
    request.tv_sec = ctx->response_timeout.tv_sec;
    request.tv_nsec = ((long int)ctx->response_timeout.tv_usec) * 1000;
    while (nanosleep(&request, &remaining) == -1 && errno == EINTR) {
        request = remaining;
    }
#endif
}

int modbus_flush(modbus_t *ctx)
{
    int rc;

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    rc = ctx->backend->flush(ctx);
    if (rc != -1 && ctx->debug) {
        /* Not all backends are able to return the number of bytes flushed */
        printf("Bytes flushed (%d)\n", rc);
    }
    return rc;
}

/* Computes the length of the expected response */
static unsigned int compute_response_length_from_request(modbus_t *ctx, uint8_t *req)
{
    int length;
    const int offset = ctx->backend->header_length;

    switch (req[offset]) {
    case MODBUS_FC_READ_COILS:
    case MODBUS_FC_READ_DISCRETE_INPUTS: {
        /* Header + nb values (code from write_bits) */
        int nb = (req[offset + 3] << 8) | req[offset + 4];
        length = 2 + (nb / 8) + ((nb % 8) ? 1 : 0);
    }
        break;
    case MODBUS_FC_WRITE_AND_READ_REGISTERS:
    case MODBUS_FC_READ_HOLDING_REGISTERS:
    case MODBUS_FC_READ_INPUT_REGISTERS:
        /* Header + 2 * nb values */
        length = 2 + 2 * (req[offset + 3] << 8 | req[offset + 4]);
        break;
    case MODBUS_FC_READ_EXCEPTION_STATUS:
        length = 3;
        break;
    case MODBUS_FC_REPORT_SLAVE_ID:
        /* The response is device specific (the header provides the
           length) */
        return MSG_LENGTH_UNDEFINED;
    case MODBUS_FC_MASK_WRITE_REGISTER:
        length = 7;
        break;
    default:
        length = 5;
    }

    return offset + length + ctx->backend->checksum_length;
}

/* Sends a request/response */
static int send_msg(modbus_t *ctx, uint8_t *msg, int msg_length)
{
    int rc;
    int i;

    msg_length = ctx->backend->send_msg_pre(msg, msg_length);

    if (ctx->debug) {
        for (i = 0; i < msg_length; i++)
            printf("[%.2X]", msg[i]);
        printf("\n");
    }

    /* In recovery mode, the write command will be issued until to be
       successful! Disabled by default. */
    do {
        rc = ctx->backend->send(ctx, msg, msg_length);
        if (rc == -1) {
            _error_print(ctx, NULL);
            if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_LINK) {
                int saved_errno = errno;

                if ((errno == EBADF || errno == ECONNRESET || errno == EPIPE)) {
                    modbus_close(ctx);
                    _sleep_response_timeout(ctx);
                    modbus_connect(ctx);
                } else {
                    _sleep_response_timeout(ctx);
                    modbus_flush(ctx);
                }
                errno = saved_errno;
            }
        }
    } while ((ctx->error_recovery & MODBUS_ERROR_RECOVERY_LINK) &&
             rc == -1);

    if (rc > 0 && rc != msg_length) {
        errno = EMBBADDATA;
        return -1;
    }

    return rc;
}

int modbus_send_raw_request(modbus_t *ctx, const uint8_t *raw_req, int raw_req_length)
{
    sft_t sft;
    uint8_t req[MAX_MESSAGE_LENGTH];
    int req_length;

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    if (raw_req_length < 2 || raw_req_length > (MODBUS_MAX_PDU_LENGTH + 1)) {
        /* The raw request must contain function and slave at least and
           must not be longer than the maximum pdu length plus the slave
           address. */
        errno = EINVAL;
        return -1;
    }

    sft.slave = raw_req[0];
    sft.function = raw_req[1];
    /* The t_id is left to zero */
    sft.t_id = 0;
    /* This response function only set the header so it's convenient here */
    req_length = ctx->backend->build_response_basis(&sft, req);

    if (raw_req_length > 2) {
        /* Copy data after function code */
        memcpy(req + req_length, raw_req + 2, raw_req_length - 2);
        req_length += raw_req_length - 2;
    }

    return send_msg(ctx, req, req_length);
}

/*
 *  ---------- Request     Indication ----------
 *  | Client | ---------------------->| Server |
 *  ---------- Confirmation  Response ----------
 */

/* Computes the length to read after the function received */
static uint8_t compute_meta_length_after_function(int function,
                                                  msg_type_t msg_type)
{
    int length;

    if (msg_type == MSG_INDICATION) {
        if (function <= MODBUS_FC_WRITE_SINGLE_REGISTER) {
            length = 4;
        } else if (function == MODBUS_FC_WRITE_MULTIPLE_COILS ||
                   function == MODBUS_FC_WRITE_MULTIPLE_REGISTERS) {
            length = 5;
        } else if (function == MODBUS_FC_MASK_WRITE_REGISTER) {
            length = 6;
        } else if (function == MODBUS_FC_WRITE_AND_READ_REGISTERS) {
            length = 9;
        } else {
            /* MODBUS_FC_READ_EXCEPTION_STATUS, MODBUS_FC_REPORT_SLAVE_ID */
            length = 0;
        }
    } else {
        /* MSG_CONFIRMATION */
        switch (function) {
        case MODBUS_FC_WRITE_SINGLE_COIL:
        case MODBUS_FC_WRITE_SINGLE_REGISTER:
        case MODBUS_FC_WRITE_MULTIPLE_COILS:
        case MODBUS_FC_WRITE_MULTIPLE_REGISTERS:
            length = 4;
            break;
        case MODBUS_FC_MASK_WRITE_REGISTER:
            length = 6;
            break;
        default:
            length = 1;
        }
    }

    return length;
}

/* Computes the length to read after the meta information (address, count, etc) */
static int compute_data_length_after_meta(modbus_t *ctx, uint8_t *msg,
                                          msg_type_t msg_type)
{
    int function = msg[ctx->backend->header_length];
    int length;

    if (msg_type == MSG_INDICATION) {
        switch (function) {
        case MODBUS_FC_WRITE_MULTIPLE_COILS:
        case MODBUS_FC_WRITE_MULTIPLE_REGISTERS:
            length = msg[ctx->backend->header_length + 5];
            break;
        case MODBUS_FC_WRITE_AND_READ_REGISTERS:
            length = msg[ctx->backend->header_length + 9];
            break;
        default:
            length = 0;
        }
    } else {
        /* MSG_CONFIRMATION */
        if (function <= MODBUS_FC_READ_INPUT_REGISTERS ||
            function == MODBUS_FC_REPORT_SLAVE_ID ||
            function == MODBUS_FC_WRITE_AND_READ_REGISTERS) {
            length = msg[ctx->backend->header_length + 1];
        } else {
            length = 0;
        }
    }

    length += ctx->backend->checksum_length;

    return length;
}


/* Waits a response from a modbus server or a request from a modbus client.
   This function blocks if there is no replies (3 timeouts).

   The function shall return the number of received characters and the received
   message in an array of uint8_t if successful. Otherwise it shall return -1
   and errno is set to one of the values defined below:
   - ECONNRESET
   - EMBBADDATA
   - EMBUNKEXC
   - ETIMEDOUT
   - read() or recv() error codes
*/

int _modbus_receive_msg(modbus_t *ctx, uint8_t *msg, msg_type_t msg_type)
{
    int rc;
    fd_set rset;
    struct timeval tv;
    struct timeval *p_tv;
    int length_to_read;
    int msg_length = 0;
    _step_t step;

    if (ctx->debug) {
        if (msg_type == MSG_INDICATION) {
            printf("Waiting for an indication...\n");
        } else {
            printf("Waiting for a confirmation...\n");
        }
    }

    /* Add a file descriptor to the set */
    FD_ZERO(&rset);
    FD_SET(ctx->s, &rset);

    /* We need to analyse the message step by step.  At the first step, we want
     * to reach the function code because all packets contain this
     * information. */
    step = _STEP_FUNCTION;
    length_to_read = ctx->backend->header_length + 1;

    if (msg_type == MSG_INDICATION) {
        /* Wait for a message, we don't know when the message will be
         * received */
        if (ctx->indication_timeout.tv_sec == 0 && ctx->indication_timeout.tv_usec == 0) {
            /* By default, the indication timeout isn't set */
            p_tv = NULL;
        } else {
            /* Wait for an indication (name of a received request by a server, see schema) */
            tv.tv_sec = ctx->indication_timeout.tv_sec;
            tv.tv_usec = ctx->indication_timeout.tv_usec;
            p_tv = &tv;
        }
    } else {
        tv.tv_sec = ctx->response_timeout.tv_sec;
        tv.tv_usec = ctx->response_timeout.tv_usec;
        p_tv = &tv;
    }

    while (length_to_read != 0) {
        rc = ctx->backend->select(ctx, &rset, p_tv, length_to_read);
        if (rc == -1) {
            _error_print(ctx, "select");
            if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_LINK) {
                int saved_errno = errno;

                if (errno == ETIMEDOUT) {
                    _sleep_response_timeout(ctx);
                    modbus_flush(ctx);
                } else if (errno == EBADF) {
                    modbus_close(ctx);
                    modbus_connect(ctx);
                }
                errno = saved_errno;
            }
            return -1;
        }

        rc = ctx->backend->recv(ctx, msg + msg_length, length_to_read);
        if (rc == 0) {
            errno = ECONNRESET;
            rc = -1;
        }

        if (rc == -1) {
            _error_print(ctx, "read");
            if ((ctx->error_recovery & MODBUS_ERROR_RECOVERY_LINK) &&
                (errno == ECONNRESET || errno == ECONNREFUSED ||
                 errno == EBADF)) {
                int saved_errno = errno;
                modbus_close(ctx);
                modbus_connect(ctx);
                /* Could be removed by previous calls */
                errno = saved_errno;
            }
            return -1;
        }

        /* Display the hex code of each character received */
        if (ctx->debug) {
            int i;
            for (i=0; i < rc; i++)
                printf("<%.2X>", msg[msg_length + i]);
        }

        /* Sums bytes received */
        msg_length += rc;
        /* Computes remaining bytes */
        length_to_read -= rc;

        if (length_to_read == 0) {
            switch (step) {
            case _STEP_FUNCTION:
                /* Function code position */
                length_to_read = compute_meta_length_after_function(
                    msg[ctx->backend->header_length],
                    msg_type);
                if (length_to_read != 0) {
                    step = _STEP_META;
                    break;
                } /* else switches straight to the next step */
            case _STEP_META:
                length_to_read = compute_data_length_after_meta(
                    ctx, msg, msg_type);
                if ((msg_length + length_to_read) > (int)ctx->backend->max_adu_length) {
                    errno = EMBBADDATA;
                    _error_print(ctx, "too many data");
                    return -1;
                }
                step = _STEP_DATA;
                break;
            default:
                break;
            }
        }

        if (length_to_read > 0 &&
            (ctx->byte_timeout.tv_sec > 0 || ctx->byte_timeout.tv_usec > 0)) {
            /* If there is no character in the buffer, the allowed timeout
               interval between two consecutive bytes is defined by
               byte_timeout */
            tv.tv_sec = ctx->byte_timeout.tv_sec;
            tv.tv_usec = ctx->byte_timeout.tv_usec;
            p_tv = &tv;
        }
        /* else timeout isn't set again, the full response must be read before
           expiration of response timeout (for CONFIRMATION only) */
    }

    if (ctx->debug)
        printf("\n");

    return ctx->backend->check_integrity(ctx, msg, msg_length);
}

/* Receive the request from a modbus master */
int modbus_receive(modbus_t *ctx, uint8_t *req)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    return ctx->backend->receive(ctx, req);
}

/* Receives the confirmation.

   The function shall store the read response in rsp and return the number of
   values (bits or words). Otherwise, its shall return -1 and errno is set.

   The function doesn't check the confirmation is the expected response to the
   initial request.
*/
int modbus_receive_confirmation(modbus_t *ctx, uint8_t *rsp)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    return _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);
}

static int check_confirmation(modbus_t *ctx, uint8_t *req,
                              uint8_t *rsp, int rsp_length)
{
    int rc;
    int rsp_length_computed;
    const int offset = ctx->backend->header_length;
    const int function = rsp[offset];

    if (ctx->backend->pre_check_confirmation) {
        rc = ctx->backend->pre_check_confirmation(ctx, req, rsp, rsp_length);
        if (rc == -1) {
            if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_PROTOCOL) {
                _sleep_response_timeout(ctx);
                modbus_flush(ctx);
            }
            return -1;
        }
    }

    rsp_length_computed = compute_response_length_from_request(ctx, req);

    /* Exception code */
    if (function >= 0x80) {
        if (rsp_length == (offset + 2 + (int)ctx->backend->checksum_length) &&
            req[offset] == (rsp[offset] - 0x80)) {
            /* Valid exception code received */

            int exception_code = rsp[offset + 1];
            if (exception_code < MODBUS_EXCEPTION_MAX) {
                errno = MODBUS_ENOBASE + exception_code;
            } else {
                errno = EMBBADEXC;
            }
            _error_print(ctx, NULL);
            return -1;
        } else {
            errno = EMBBADEXC;
            _error_print(ctx, NULL);
            return -1;
        }
    }

    /* Check length */
    if ((rsp_length == rsp_length_computed ||
         rsp_length_computed == MSG_LENGTH_UNDEFINED) &&
        function < 0x80) {
        int req_nb_value;
        int rsp_nb_value;

        /* Check function code */
        if (function != req[offset]) {
            if (ctx->debug) {
                fprintf(stderr,
                        "Received function not corresponding to the request (0x%X != 0x%X)\n",
                        function, req[offset]);
            }
            if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_PROTOCOL) {
                _sleep_response_timeout(ctx);
                modbus_flush(ctx);
            }
            errno = EMBBADDATA;
            return -1;
        }

        /* Check the number of values is corresponding to the request */
        switch (function) {
        case MODBUS_FC_READ_COILS:
        case MODBUS_FC_READ_DISCRETE_INPUTS:
            /* Read functions, 8 values in a byte (nb
             * of values in the request and byte count in
             * the response. */
            req_nb_value = (req[offset + 3] << 8) + req[offset + 4];
            req_nb_value = (req_nb_value / 8) + ((req_nb_value % 8) ? 1 : 0);
            rsp_nb_value = rsp[offset + 1];
            break;
        case MODBUS_FC_WRITE_AND_READ_REGISTERS:
        case MODBUS_FC_READ_HOLDING_REGISTERS:
        case MODBUS_FC_READ_INPUT_REGISTERS:
            /* Read functions 1 value = 2 bytes */
            req_nb_value = (req[offset + 3] << 8) + req[offset + 4];
            rsp_nb_value = (rsp[offset + 1] / 2);
            break;
        case MODBUS_FC_WRITE_MULTIPLE_COILS:
        case MODBUS_FC_WRITE_MULTIPLE_REGISTERS:
            /* N Write functions */
            req_nb_value = (req[offset + 3] << 8) + req[offset + 4];
            rsp_nb_value = (rsp[offset + 3] << 8) | rsp[offset + 4];
            break;
        case MODBUS_FC_REPORT_SLAVE_ID:
            /* Report slave ID (bytes received) */
            req_nb_value = rsp_nb_value = rsp[offset + 1];
            break;
        default:
            /* 1 Write functions & others */
            req_nb_value = rsp_nb_value = 1;
        }

        if (req_nb_value == rsp_nb_value) {
            rc = rsp_nb_value;
        } else {
            if (ctx->debug) {
                fprintf(stderr,
                        "Quantity not corresponding to the request (%d != %d)\n",
                        rsp_nb_value, req_nb_value);
            }

            if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_PROTOCOL) {
                _sleep_response_timeout(ctx);
                modbus_flush(ctx);
            }

            errno = EMBBADDATA;
            rc = -1;
        }
    } else {
        if (ctx->debug) {
            fprintf(stderr,
                    "Message length not corresponding to the computed length (%d != %d)\n",
                    rsp_length, rsp_length_computed);
        }
        if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_PROTOCOL) {
            _sleep_response_timeout(ctx);
            modbus_flush(ctx);
        }
        errno = EMBBADDATA;
        rc = -1;
    }

    return rc;
}

static int response_io_status(uint8_t *tab_io_status,
                              int address, int nb,
                              uint8_t *rsp, int offset)
{
    int shift = 0;
    /* Instead of byte (not allowed in Win32) */
    int one_byte = 0;
    int i;

    for (i = address; i < address + nb; i++) {
        one_byte |= tab_io_status[i] << shift;
        if (shift == 7) {
            /* Byte is full */
            rsp[offset++] = one_byte;
            one_byte = shift = 0;
        } else {
            shift++;
        }
    }

    if (shift != 0)
        rsp[offset++] = one_byte;

    return offset;
}

/* Build the exception response */
static int response_exception(modbus_t *ctx, sft_t *sft,
                              int exception_code, uint8_t *rsp,
                              unsigned int to_flush,
                              const char* template, ...)
{
    int rsp_length;

    /* Print debug message */
    if (ctx->debug) {
        va_list ap;

        va_start(ap, template);
        vfprintf(stderr, template, ap);
        va_end(ap);
    }

    /* Flush if required */
    if (to_flush) {
        _sleep_response_timeout(ctx);
        modbus_flush(ctx);
    }

    /* Build exception response */
    sft->function = sft->function + 0x80;
    rsp_length = ctx->backend->build_response_basis(sft, rsp);
    rsp[rsp_length++] = exception_code;

    return rsp_length;
}

/* Send a response to the received request.
   Analyses the request and constructs a response.

   If an error occurs, this function construct the response
   accordingly.
*/
int modbus_reply(modbus_t *ctx, const uint8_t *req,
                 int req_length, modbus_mapping_t *mb_mapping)
{
    int offset;
    int slave;
    int function;
    uint16_t address;
    uint8_t rsp[MAX_MESSAGE_LENGTH];
    int rsp_length = 0;
    sft_t sft;

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    offset = ctx->backend->header_length;
    slave = req[offset - 1];
    function = req[offset];
    address = (req[offset + 1] << 8) + req[offset + 2];

    sft.slave = slave;
    sft.function = function;
    sft.t_id = ctx->backend->prepare_response_tid(req, &req_length);

    /* Data are flushed on illegal number of values errors. */
    switch (function) {
    case MODBUS_FC_READ_COILS:
    case MODBUS_FC_READ_DISCRETE_INPUTS: {
        unsigned int is_input = (function == MODBUS_FC_READ_DISCRETE_INPUTS);
        int start_bits = is_input ? mb_mapping->start_input_bits : mb_mapping->start_bits;
        int nb_bits = is_input ? mb_mapping->nb_input_bits : mb_mapping->nb_bits;
        uint8_t *tab_bits = is_input ? mb_mapping->tab_input_bits : mb_mapping->tab_bits;
        const char * const name = is_input ? "read_input_bits" : "read_bits";
        int nb = (req[offset + 3] << 8) + req[offset + 4];
        /* The mapping can be shifted to reduce memory consumption and it
           doesn't always start at address zero. */
        int mapping_address = address - start_bits;

        if (nb < 1 || MODBUS_MAX_READ_BITS < nb) {
            rsp_length = response_exception(
                ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE,
                "Illegal nb of values %d in %s (max %d)\n",
                nb, name, MODBUS_MAX_READ_BITS);
        } else if (mapping_address < 0 || (mapping_address + nb) > nb_bits) {
            rsp_length = response_exception(
                ctx, &sft,
                MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,
                "Illegal data address 0x%0X in %s\n",
                mapping_address < 0 ? address : address + nb, name);
        } else {
            rsp_length = ctx->backend->build_response_basis(&sft, rsp);
            rsp[rsp_length++] = (nb / 8) + ((nb % 8) ? 1 : 0);
            rsp_length = response_io_status(tab_bits, mapping_address, nb,
                                            rsp, rsp_length);
        }
    }
        break;
    case MODBUS_FC_READ_HOLDING_REGISTERS:
    case MODBUS_FC_READ_INPUT_REGISTERS: {
        unsigned int is_input = (function == MODBUS_FC_READ_INPUT_REGISTERS);
        int start_registers = is_input ? mb_mapping->start_input_registers : mb_mapping->start_registers;
        int nb_registers = is_input ? mb_mapping->nb_input_registers : mb_mapping->nb_registers;
        uint16_t *tab_registers = is_input ? mb_mapping->tab_input_registers : mb_mapping->tab_registers;
        const char * const name = is_input ? "read_input_registers" : "read_registers";
        int nb = (req[offset + 3] << 8) + req[offset + 4];
        /* The mapping can be shifted to reduce memory consumption and it
           doesn't always start at address zero. */
        int mapping_address = address - start_registers;

        if (nb < 1 || MODBUS_MAX_READ_REGISTERS < nb) {
            rsp_length = response_exception(
                ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE,
                "Illegal nb of values %d in %s (max %d)\n",
                nb, name, MODBUS_MAX_READ_REGISTERS);
        } else if (mapping_address < 0 || (mapping_address + nb) > nb_registers) {
            rsp_length = response_exception(
                ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,
                "Illegal data address 0x%0X in %s\n",
                mapping_address < 0 ? address : address + nb, name);
        } else {
            int i;

            rsp_length = ctx->backend->build_response_basis(&sft, rsp);
            rsp[rsp_length++] = nb << 1;
            for (i = mapping_address; i < mapping_address + nb; i++) {
                rsp[rsp_length++] = tab_registers[i] >> 8;
                rsp[rsp_length++] = tab_registers[i] & 0xFF;
            }
        }
    }
        break;
    case MODBUS_FC_WRITE_SINGLE_COIL: {
        int mapping_address = address - mb_mapping->start_bits;

        if (mapping_address < 0 || mapping_address >= mb_mapping->nb_bits) {
            rsp_length = response_exception(
                ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,
                "Illegal data address 0x%0X in write_bit\n",
                address);
        } else {
            int data = (req[offset + 3] << 8) + req[offset + 4];

            if (data == 0xFF00 || data == 0x0) {
                mb_mapping->tab_bits[mapping_address] = data ? ON : OFF;
                memcpy(rsp, req, req_length);
                rsp_length = req_length;
            } else {
                rsp_length = response_exception(
                    ctx, &sft,
                    MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, FALSE,
                    "Illegal data value 0x%0X in write_bit request at address %0X\n",
                    data, address);
            }
        }
    }
        break;
    case MODBUS_FC_WRITE_SINGLE_REGISTER: {
        int mapping_address = address - mb_mapping->start_registers;

        if (mapping_address < 0 || mapping_address >= mb_mapping->nb_registers) {
            rsp_length = response_exception(
                ctx, &sft,
                MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,
                "Illegal data address 0x%0X in write_register\n",
                address);
        } else {
            int data = (req[offset + 3] << 8) + req[offset + 4];

            mb_mapping->tab_registers[mapping_address] = data;
            memcpy(rsp, req, req_length);
            rsp_length = req_length;
        }
    }
        break;
    case MODBUS_FC_WRITE_MULTIPLE_COILS: {
        int nb = (req[offset + 3] << 8) + req[offset + 4];
        int nb_bits = req[offset + 5];
        int mapping_address = address - mb_mapping->start_bits;

        if (nb < 1 || MODBUS_MAX_WRITE_BITS < nb || nb_bits * 8 < nb) {
            /* May be the indication has been truncated on reading because of
             * invalid address (eg. nb is 0 but the request contains values to
             * write) so it's necessary to flush. */
            rsp_length = response_exception(
                ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE,
                "Illegal number of values %d in write_bits (max %d)\n",
                nb, MODBUS_MAX_WRITE_BITS);
        } else if (mapping_address < 0 ||
                   (mapping_address + nb) > mb_mapping->nb_bits) {
            rsp_length = response_exception(
                ctx, &sft,
                MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,
                "Illegal data address 0x%0X in write_bits\n",
                mapping_address < 0 ? address : address + nb);
        } else {
            /* 6 = byte count */
            modbus_set_bits_from_bytes(mb_mapping->tab_bits, mapping_address, nb,
                                       &req[offset + 6]);

            rsp_length = ctx->backend->build_response_basis(&sft, rsp);
            /* 4 to copy the bit address (2) and the quantity of bits */
            memcpy(rsp + rsp_length, req + rsp_length, 4);
            rsp_length += 4;
        }
    }
        break;
    case MODBUS_FC_WRITE_MULTIPLE_REGISTERS: {
        int nb = (req[offset + 3] << 8) + req[offset + 4];
        int nb_bytes = req[offset + 5];
        int mapping_address = address - mb_mapping->start_registers;

        if (nb < 1 || MODBUS_MAX_WRITE_REGISTERS < nb || nb_bytes != nb * 2) {
            rsp_length = response_exception(
                ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE,
                "Illegal number of values %d in write_registers (max %d)\n",
                nb, MODBUS_MAX_WRITE_REGISTERS);
        } else if (mapping_address < 0 ||
                   (mapping_address + nb) > mb_mapping->nb_registers) {
            rsp_length = response_exception(
                ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,
                "Illegal data address 0x%0X in write_registers\n",
                mapping_address < 0 ? address : address + nb);
        } else {
            int i, j;
            for (i = mapping_address, j = 6; i < mapping_address + nb; i++, j += 2) {
                /* 6 and 7 = first value */
                mb_mapping->tab_registers[i] =
                    (req[offset + j] << 8) + req[offset + j + 1];
            }

            rsp_length = ctx->backend->build_response_basis(&sft, rsp);
            /* 4 to copy the address (2) and the no. of registers */
            memcpy(rsp + rsp_length, req + rsp_length, 4);
            rsp_length += 4;
        }
    }
        break;
    case MODBUS_FC_REPORT_SLAVE_ID: {
        int str_len;
        int byte_count_pos;

        rsp_length = ctx->backend->build_response_basis(&sft, rsp);
        /* Skip byte count for now */
        byte_count_pos = rsp_length++;
        rsp[rsp_length++] = _REPORT_SLAVE_ID;
        /* Run indicator status to ON */
        rsp[rsp_length++] = 0xFF;
        /* LMB + length of LIBMODBUS_VERSION_STRING */
        str_len = 3 + strlen(LIBMODBUS_VERSION_STRING);
        memcpy(rsp + rsp_length, "LMB" LIBMODBUS_VERSION_STRING, str_len);
        rsp_length += str_len;
        rsp[byte_count_pos] = rsp_length - byte_count_pos - 1;
    }
        break;
    case MODBUS_FC_READ_EXCEPTION_STATUS:
        if (ctx->debug) {
            fprintf(stderr, "FIXME Not implemented\n");
        }
        errno = ENOPROTOOPT;
        return -1;
        break;
    case MODBUS_FC_MASK_WRITE_REGISTER: {
        int mapping_address = address - mb_mapping->start_registers;

        if (mapping_address < 0 || mapping_address >= mb_mapping->nb_registers) {
            rsp_length = response_exception(
                ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,
                "Illegal data address 0x%0X in write_register\n",
                address);
        } else {
            uint16_t data = mb_mapping->tab_registers[mapping_address];
            uint16_t and = (req[offset + 3] << 8) + req[offset + 4];
            uint16_t or = (req[offset + 5] << 8) + req[offset + 6];

            data = (data & and) | (or & (~and));
            mb_mapping->tab_registers[mapping_address] = data;
            memcpy(rsp, req, req_length);
            rsp_length = req_length;
        }
    }
        break;
    case MODBUS_FC_WRITE_AND_READ_REGISTERS: {
        int nb = (req[offset + 3] << 8) + req[offset + 4];
        uint16_t address_write = (req[offset + 5] << 8) + req[offset + 6];
        int nb_write = (req[offset + 7] << 8) + req[offset + 8];
        int nb_write_bytes = req[offset + 9];
        int mapping_address = address - mb_mapping->start_registers;
        int mapping_address_write = address_write - mb_mapping->start_registers;

        if (nb_write < 1 || MODBUS_MAX_WR_WRITE_REGISTERS < nb_write ||
            nb < 1 || MODBUS_MAX_WR_READ_REGISTERS < nb ||
            nb_write_bytes != nb_write * 2) {
            rsp_length = response_exception(
                ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE,
                "Illegal nb of values (W%d, R%d) in write_and_read_registers (max W%d, R%d)\n",
                nb_write, nb, MODBUS_MAX_WR_WRITE_REGISTERS, MODBUS_MAX_WR_READ_REGISTERS);
        } else if (mapping_address < 0 ||
                   (mapping_address + nb) > mb_mapping->nb_registers ||
                   mapping_address < 0 ||
                   (mapping_address_write + nb_write) > mb_mapping->nb_registers) {
            rsp_length = response_exception(
                ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,
                "Illegal data read address 0x%0X or write address 0x%0X write_and_read_registers\n",
                mapping_address < 0 ? address : address + nb,
                mapping_address_write < 0 ? address_write : address_write + nb_write);
        } else {
            int i, j;
            rsp_length = ctx->backend->build_response_basis(&sft, rsp);
            rsp[rsp_length++] = nb << 1;

            /* Write first.
               10 and 11 are the offset of the first values to write */
            for (i = mapping_address_write, j = 10;
                 i < mapping_address_write + nb_write; i++, j += 2) {
                mb_mapping->tab_registers[i] =
                    (req[offset + j] << 8) + req[offset + j + 1];
            }

            /* and read the data for the response */
            for (i = mapping_address; i < mapping_address + nb; i++) {
                rsp[rsp_length++] = mb_mapping->tab_registers[i] >> 8;
                rsp[rsp_length++] = mb_mapping->tab_registers[i] & 0xFF;
            }
        }
    }
        break;

    default:
        rsp_length = response_exception(
            ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_FUNCTION, rsp, TRUE,
            "Unknown Modbus function code: 0x%0X\n", function);
        break;
    }

    /* Suppress any responses when the request was a broadcast */
    return (ctx->backend->backend_type == _MODBUS_BACKEND_TYPE_RTU &&
            slave == MODBUS_BROADCAST_ADDRESS) ? 0 : send_msg(ctx, rsp, rsp_length);
}

int modbus_reply_exception(modbus_t *ctx, const uint8_t *req,
                           unsigned int exception_code)
{
    int offset;
    int slave;
    int function;
    uint8_t rsp[MAX_MESSAGE_LENGTH];
    int rsp_length;
    int dummy_length = 99;
    sft_t sft;

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    offset = ctx->backend->header_length;
    slave = req[offset - 1];
    function = req[offset];

    sft.slave = slave;
    sft.function = function + 0x80;
    sft.t_id = ctx->backend->prepare_response_tid(req, &dummy_length);
    rsp_length = ctx->backend->build_response_basis(&sft, rsp);

    /* Positive exception code */
    if (exception_code < MODBUS_EXCEPTION_MAX) {
        rsp[rsp_length++] = exception_code;
        return send_msg(ctx, rsp, rsp_length);
    } else {
        errno = EINVAL;
        return -1;
    }
}

/* Reads IO status */
static int read_io_status(modbus_t *ctx, int function,
                          int addr, int nb, uint8_t *dest)
{
    int rc;
    int req_length;

    uint8_t req[_MIN_REQ_LENGTH];
    uint8_t rsp[MAX_MESSAGE_LENGTH];

    req_length = ctx->backend->build_request_basis(ctx, function, addr, nb, req);

    rc = send_msg(ctx, req, req_length);
    if (rc > 0) {
        int i, temp, bit;
        int pos = 0;
        int offset;
        int offset_end;

        rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);
        if (rc == -1)
            return -1;

        rc = check_confirmation(ctx, req, rsp, rc);
        if (rc == -1)
            return -1;

        offset = ctx->backend->header_length + 2;
        offset_end = offset + rc;
        for (i = offset; i < offset_end; i++) {
            /* Shift reg hi_byte to temp */
            temp = rsp[i];

            for (bit = 0x01; (bit & 0xff) && (pos < nb);) {
                dest[pos++] = (temp & bit) ? TRUE : FALSE;
                bit = bit << 1;
            }

        }
    }

    return rc;
}

/* Reads the boolean status of bits and sets the array elements
   in the destination to TRUE or FALSE (single bits). */
int modbus_read_bits(modbus_t *ctx, int addr, int nb, uint8_t *dest)
{
    int rc;

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    if (nb > MODBUS_MAX_READ_BITS) {
        if (ctx->debug) {
            fprintf(stderr,
                    "ERROR Too many bits requested (%d > %d)\n",
                    nb, MODBUS_MAX_READ_BITS);
        }
        errno = EMBMDATA;
        return -1;
    }

    rc = read_io_status(ctx, MODBUS_FC_READ_COILS, addr, nb, dest);

    if (rc == -1)
        return -1;
    else
        return nb;
}


/* Same as modbus_read_bits but reads the remote device input table */
int modbus_read_input_bits(modbus_t *ctx, int addr, int nb, uint8_t *dest)
{
    int rc;

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    if (nb > MODBUS_MAX_READ_BITS) {
        if (ctx->debug) {
            fprintf(stderr,
                    "ERROR Too many discrete inputs requested (%d > %d)\n",
                    nb, MODBUS_MAX_READ_BITS);
        }
        errno = EMBMDATA;
        return -1;
    }

    rc = read_io_status(ctx, MODBUS_FC_READ_DISCRETE_INPUTS, addr, nb, dest);

    if (rc == -1)
        return -1;
    else
        return nb;
}

/* Reads the data from a remove device and put that data into an array */
static int read_registers(modbus_t *ctx, int function, int addr, int nb,
                          uint16_t *dest)
{
    int rc;
    int req_length;
    uint8_t req[_MIN_REQ_LENGTH];
    uint8_t rsp[MAX_MESSAGE_LENGTH];

    if (nb > MODBUS_MAX_READ_REGISTERS) {
        if (ctx->debug) {
            fprintf(stderr,
                    "ERROR Too many registers requested (%d > %d)\n",
                    nb, MODBUS_MAX_READ_REGISTERS);
        }
        errno = EMBMDATA;
        return -1;
    }

    req_length = ctx->backend->build_request_basis(ctx, function, addr, nb, req);

    rc = send_msg(ctx, req, req_length);
    if (rc > 0) {
        int offset;
        int i;

        rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);
        if (rc == -1)
            return -1;

        rc = check_confirmation(ctx, req, rsp, rc);
        if (rc == -1)
            return -1;

        offset = ctx->backend->header_length;

        for (i = 0; i < rc; i++) {
            /* shift reg hi_byte to temp OR with lo_byte */
            dest[i] = (rsp[offset + 2 + (i << 1)] << 8) |
                rsp[offset + 3 + (i << 1)];
        }
    }

    return rc;
}

/* Reads the holding registers of remote device and put the data into an
   array */
int modbus_read_registers(modbus_t *ctx, int addr, int nb, uint16_t *dest)
{
    int status;

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    if (nb > MODBUS_MAX_READ_REGISTERS) {
        if (ctx->debug) {
            fprintf(stderr,
                    "ERROR Too many registers requested (%d > %d)\n",
                    nb, MODBUS_MAX_READ_REGISTERS);
        }
        errno = EMBMDATA;
        return -1;
    }

    status = read_registers(ctx, MODBUS_FC_READ_HOLDING_REGISTERS,
                            addr, nb, dest);
    return status;
}

/* Reads the input registers of remote device and put the data into an array */
int modbus_read_input_registers(modbus_t *ctx, int addr, int nb,
                                uint16_t *dest)
{
    int status;

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    if (nb > MODBUS_MAX_READ_REGISTERS) {
        fprintf(stderr,
                "ERROR Too many input registers requested (%d > %d)\n",
                nb, MODBUS_MAX_READ_REGISTERS);
        errno = EMBMDATA;
        return -1;
    }

    status = read_registers(ctx, MODBUS_FC_READ_INPUT_REGISTERS,
                            addr, nb, dest);

    return status;
}

/* Write a value to the specified register of the remote device.
   Used by write_bit and write_register */
static int write_single(modbus_t *ctx, int function, int addr, const uint16_t value)
{
    int rc;
    int req_length;
    uint8_t req[_MIN_REQ_LENGTH];

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    req_length = ctx->backend->build_request_basis(ctx, function, addr, (int) value, req);

    rc = send_msg(ctx, req, req_length);
    if (rc > 0) {
        /* Used by write_bit and write_register */
        uint8_t rsp[MAX_MESSAGE_LENGTH];

        rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);
        if (rc == -1)
            return -1;

        rc = check_confirmation(ctx, req, rsp, rc);
    }

    return rc;
}

/* Turns ON or OFF a single bit of the remote device */
int modbus_write_bit(modbus_t *ctx, int addr, int status)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    return write_single(ctx, MODBUS_FC_WRITE_SINGLE_COIL, addr,
                        status ? 0xFF00 : 0);
}

/* Writes a value in one register of the remote device */
int modbus_write_register(modbus_t *ctx, int addr, const uint16_t value)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    return write_single(ctx, MODBUS_FC_WRITE_SINGLE_REGISTER, addr, value);
}

/* Write the bits of the array in the remote device */
int modbus_write_bits(modbus_t *ctx, int addr, int nb, const uint8_t *src)
{
    int rc;
    int i;
    int byte_count;
    int req_length;
    int bit_check = 0;
    int pos = 0;
    uint8_t req[MAX_MESSAGE_LENGTH];

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    if (nb > MODBUS_MAX_WRITE_BITS) {
        if (ctx->debug) {
            fprintf(stderr, "ERROR Writing too many bits (%d > %d)\n",
                    nb, MODBUS_MAX_WRITE_BITS);
        }
        errno = EMBMDATA;
        return -1;
    }

    req_length = ctx->backend->build_request_basis(ctx,
                                                   MODBUS_FC_WRITE_MULTIPLE_COILS,
                                                   addr, nb, req);
    byte_count = (nb / 8) + ((nb % 8) ? 1 : 0);
    req[req_length++] = byte_count;

    for (i = 0; i < byte_count; i++) {
        int bit;

        bit = 0x01;
        req[req_length] = 0;

        while ((bit & 0xFF) && (bit_check++ < nb)) {
            if (src[pos++])
                req[req_length] |= bit;
            else
                req[req_length] &=~ bit;

            bit = bit << 1;
        }
        req_length++;
    }

    rc = send_msg(ctx, req, req_length);
    if (rc > 0) {
        uint8_t rsp[MAX_MESSAGE_LENGTH];

        rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);
        if (rc == -1)
            return -1;

        rc = check_confirmation(ctx, req, rsp, rc);
    }


    return rc;
}

/* Write the values from the array to the registers of the remote device */
int modbus_write_registers(modbus_t *ctx, int addr, int nb, const uint16_t *src)
{
    int rc;
    int i;
    int req_length;
    int byte_count;
    uint8_t req[MAX_MESSAGE_LENGTH];

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    if (nb > MODBUS_MAX_WRITE_REGISTERS) {
        if (ctx->debug) {
            fprintf(stderr,
                    "ERROR Trying to write to too many registers (%d > %d)\n",
                    nb, MODBUS_MAX_WRITE_REGISTERS);
        }
        errno = EMBMDATA;
        return -1;
    }

    req_length = ctx->backend->build_request_basis(ctx,
                                                   MODBUS_FC_WRITE_MULTIPLE_REGISTERS,
                                                   addr, nb, req);
    byte_count = nb * 2;
    req[req_length++] = byte_count;

    for (i = 0; i < nb; i++) {
        req[req_length++] = src[i] >> 8;
        req[req_length++] = src[i] & 0x00FF;
    }

    rc = send_msg(ctx, req, req_length);
    if (rc > 0) {
        uint8_t rsp[MAX_MESSAGE_LENGTH];

        rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);
        if (rc == -1)
            return -1;

        rc = check_confirmation(ctx, req, rsp, rc);
    }

    return rc;
}

int modbus_mask_write_register(modbus_t *ctx, int addr, uint16_t and_mask, uint16_t or_mask)
{
    int rc;
    int req_length;
    /* The request length can not exceed _MIN_REQ_LENGTH - 2 and 4 bytes to
     * store the masks. The ugly substraction is there to remove the 'nb' value
     * (2 bytes) which is not used. */
    uint8_t req[_MIN_REQ_LENGTH + 2];

    req_length = ctx->backend->build_request_basis(ctx,
                                                   MODBUS_FC_MASK_WRITE_REGISTER,
                                                   addr, 0, req);

    /* HACKISH, count is not used */
    req_length -= 2;

    req[req_length++] = and_mask >> 8;
    req[req_length++] = and_mask & 0x00ff;
    req[req_length++] = or_mask >> 8;
    req[req_length++] = or_mask & 0x00ff;

    rc = send_msg(ctx, req, req_length);
    if (rc > 0) {
        /* Used by write_bit and write_register */
        uint8_t rsp[MAX_MESSAGE_LENGTH];

        rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);
        if (rc == -1)
            return -1;

        rc = check_confirmation(ctx, req, rsp, rc);
    }

    return rc;
}

/* Write multiple registers from src array to remote device and read multiple
   registers from remote device to dest array. */
int modbus_write_and_read_registers(modbus_t *ctx,
                                    int write_addr, int write_nb,
                                    const uint16_t *src,
                                    int read_addr, int read_nb,
                                    uint16_t *dest)

{
    int rc;
    int req_length;
    int i;
    int byte_count;
    uint8_t req[MAX_MESSAGE_LENGTH];
    uint8_t rsp[MAX_MESSAGE_LENGTH];

    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    if (write_nb > MODBUS_MAX_WR_WRITE_REGISTERS) {
        if (ctx->debug) {
            fprintf(stderr,
                    "ERROR Too many registers to write (%d > %d)\n",
                    write_nb, MODBUS_MAX_WR_WRITE_REGISTERS);
        }
        errno = EMBMDATA;
        return -1;
    }

    if (read_nb > MODBUS_MAX_WR_READ_REGISTERS) {
        if (ctx->debug) {
            fprintf(stderr,
                    "ERROR Too many registers requested (%d > %d)\n",
                    read_nb, MODBUS_MAX_WR_READ_REGISTERS);
        }
        errno = EMBMDATA;
        return -1;
    }
    req_length = ctx->backend->build_request_basis(ctx,
                                                   MODBUS_FC_WRITE_AND_READ_REGISTERS,
                                                   read_addr, read_nb, req);

    req[req_length++] = write_addr >> 8;
    req[req_length++] = write_addr & 0x00ff;
    req[req_length++] = write_nb >> 8;
    req[req_length++] = write_nb & 0x00ff;
    byte_count = write_nb * 2;
    req[req_length++] = byte_count;

    for (i = 0; i < write_nb; i++) {
        req[req_length++] = src[i] >> 8;
        req[req_length++] = src[i] & 0x00FF;
    }

    rc = send_msg(ctx, req, req_length);
    if (rc > 0) {
        int offset;

        rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);
        if (rc == -1)
            return -1;

        rc = check_confirmation(ctx, req, rsp, rc);
        if (rc == -1)
            return -1;

        offset = ctx->backend->header_length;
        for (i = 0; i < rc; i++) {
            /* shift reg hi_byte to temp OR with lo_byte */
            dest[i] = (rsp[offset + 2 + (i << 1)] << 8) |
                rsp[offset + 3 + (i << 1)];
        }
    }

    return rc;
}

/* Send a request to get the slave ID of the device (only available in serial
   communication). */
int modbus_report_slave_id(modbus_t *ctx, int max_dest, uint8_t *dest)
{
    int rc;
    int req_length;
    uint8_t req[_MIN_REQ_LENGTH];

    if (ctx == NULL || max_dest <= 0) {
        errno = EINVAL;
        return -1;
    }

    req_length = ctx->backend->build_request_basis(ctx, MODBUS_FC_REPORT_SLAVE_ID,
                                                   0, 0, req);

    /* HACKISH, addr and count are not used */
    req_length -= 4;

    rc = send_msg(ctx, req, req_length);
    if (rc > 0) {
        int i;
        int offset;
        uint8_t rsp[MAX_MESSAGE_LENGTH];

        rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);
        if (rc == -1)
            return -1;

        rc = check_confirmation(ctx, req, rsp, rc);
        if (rc == -1)
            return -1;

        offset = ctx->backend->header_length + 2;

        /* Byte count, slave id, run indicator status and
           additional data. Truncate copy to max_dest. */
        for (i=0; i < rc && i < max_dest; i++) {
            dest[i] = rsp[offset + i];
        }
    }

    return rc;
}

void _modbus_init_common(modbus_t *ctx)
{
    /* Slave and socket are initialized to -1 */
    ctx->slave = -1;
    ctx->s = -1;

    ctx->debug = FALSE;
    ctx->error_recovery = MODBUS_ERROR_RECOVERY_NONE;

    ctx->response_timeout.tv_sec = 0;
    ctx->response_timeout.tv_usec = _RESPONSE_TIMEOUT;

    ctx->byte_timeout.tv_sec = 0;
    ctx->byte_timeout.tv_usec = _BYTE_TIMEOUT;

    ctx->indication_timeout.tv_sec = 0;
    ctx->indication_timeout.tv_usec = 0;
}

/* Define the slave number */
int modbus_set_slave(modbus_t *ctx, int slave)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    return ctx->backend->set_slave(ctx, slave);
}

int modbus_get_slave(modbus_t *ctx)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    return ctx->slave;
}

int modbus_set_error_recovery(modbus_t *ctx,
                              modbus_error_recovery_mode error_recovery)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    /* The type of modbus_error_recovery_mode is unsigned enum */
    ctx->error_recovery = (uint8_t) error_recovery;
    return 0;
}

int modbus_set_socket(modbus_t *ctx, int s)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    ctx->s = s;
    return 0;
}

int modbus_get_socket(modbus_t *ctx)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    return ctx->s;
}

/* Get the timeout interval used to wait for a response */
int modbus_get_response_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    *to_sec = ctx->response_timeout.tv_sec;
    *to_usec = ctx->response_timeout.tv_usec;
    return 0;
}

int modbus_set_response_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec)
{
    if (ctx == NULL ||
        (to_sec == 0 && to_usec == 0) || to_usec > 999999) {
        errno = EINVAL;
        return -1;
    }

    ctx->response_timeout.tv_sec = to_sec;
    ctx->response_timeout.tv_usec = to_usec;
    return 0;
}

/* Get the timeout interval between two consecutive bytes of a message */
int modbus_get_byte_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    *to_sec = ctx->byte_timeout.tv_sec;
    *to_usec = ctx->byte_timeout.tv_usec;
    return 0;
}

int modbus_set_byte_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec)
{
    /* Byte timeout can be disabled when both values are zero */
    if (ctx == NULL || to_usec > 999999) {
        errno = EINVAL;
        return -1;
    }

    ctx->byte_timeout.tv_sec = to_sec;
    ctx->byte_timeout.tv_usec = to_usec;
    return 0;
}

/* Get the timeout interval used by the server to wait for an indication from a client */
int modbus_get_indication_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    *to_sec = ctx->indication_timeout.tv_sec;
    *to_usec = ctx->indication_timeout.tv_usec;
    return 0;
}

int modbus_set_indication_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec)
{
    /* Indication timeout can be disabled when both values are zero */
    if (ctx == NULL || to_usec > 999999) {
        errno = EINVAL;
        return -1;
    }

    ctx->indication_timeout.tv_sec = to_sec;
    ctx->indication_timeout.tv_usec = to_usec;
    return 0;
}

int modbus_get_header_length(modbus_t *ctx)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    return ctx->backend->header_length;
}

int modbus_connect(modbus_t *ctx)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    return ctx->backend->connect(ctx);
}

void modbus_close(modbus_t *ctx)
{
    if (ctx == NULL)
        return;

    ctx->backend->close(ctx);
}

void modbus_free(modbus_t *ctx)
{
    if (ctx == NULL)
        return;

    ctx->backend->free(ctx);
}

int modbus_set_debug(modbus_t *ctx, int flag)
{
    if (ctx == NULL) {
        errno = EINVAL;
        return -1;
    }

    ctx->debug = flag;
    return 0;
}

/* Allocates 4 arrays to store bits, input bits, registers and inputs
   registers. The pointers are stored in modbus_mapping structure.

   The modbus_mapping_new_start_address() function shall return the new allocated
   structure if successful. Otherwise it shall return NULL and set errno to
   ENOMEM. */
modbus_mapping_t* modbus_mapping_new_start_address(
    unsigned int start_bits, unsigned int nb_bits,
    unsigned int start_input_bits, unsigned int nb_input_bits,
    unsigned int start_registers, unsigned int nb_registers,
    unsigned int start_input_registers, unsigned int nb_input_registers)
{
    modbus_mapping_t *mb_mapping;

    mb_mapping = (modbus_mapping_t *)malloc(sizeof(modbus_mapping_t));
    if (mb_mapping == NULL) {
        return NULL;
    }

    /* 0X */
    mb_mapping->nb_bits = nb_bits;
    mb_mapping->start_bits = start_bits;
    if (nb_bits == 0) {
        mb_mapping->tab_bits = NULL;
    } else {
        /* Negative number raises a POSIX error */
        mb_mapping->tab_bits =
            (uint8_t *) malloc(nb_bits * sizeof(uint8_t));
        if (mb_mapping->tab_bits == NULL) {
            free(mb_mapping);
            return NULL;
        }
        memset(mb_mapping->tab_bits, 0, nb_bits * sizeof(uint8_t));
    }

    /* 1X */
    mb_mapping->nb_input_bits = nb_input_bits;
    mb_mapping->start_input_bits = start_input_bits;
    if (nb_input_bits == 0) {
        mb_mapping->tab_input_bits = NULL;
    } else {
        mb_mapping->tab_input_bits =
            (uint8_t *) malloc(nb_input_bits * sizeof(uint8_t));
        if (mb_mapping->tab_input_bits == NULL) {
            free(mb_mapping->tab_bits);
            free(mb_mapping);
            return NULL;
        }
        memset(mb_mapping->tab_input_bits, 0, nb_input_bits * sizeof(uint8_t));
    }

    /* 4X */
    mb_mapping->nb_registers = nb_registers;
    mb_mapping->start_registers = start_registers;
    if (nb_registers == 0) {
        mb_mapping->tab_registers = NULL;
    } else {
        mb_mapping->tab_registers =
            (uint16_t *) malloc(nb_registers * sizeof(uint16_t));
        if (mb_mapping->tab_registers == NULL) {
            free(mb_mapping->tab_input_bits);
            free(mb_mapping->tab_bits);
            free(mb_mapping);
            return NULL;
        }
        memset(mb_mapping->tab_registers, 0, nb_registers * sizeof(uint16_t));
    }

    /* 3X */
    mb_mapping->nb_input_registers = nb_input_registers;
    mb_mapping->start_input_registers = start_input_registers;
    if (nb_input_registers == 0) {
        mb_mapping->tab_input_registers = NULL;
    } else {
        mb_mapping->tab_input_registers =
            (uint16_t *) malloc(nb_input_registers * sizeof(uint16_t));
        if (mb_mapping->tab_input_registers == NULL) {
            free(mb_mapping->tab_registers);
            free(mb_mapping->tab_input_bits);
            free(mb_mapping->tab_bits);
            free(mb_mapping);
            return NULL;
        }
        memset(mb_mapping->tab_input_registers, 0,
               nb_input_registers * sizeof(uint16_t));
    }

    return mb_mapping;
}

modbus_mapping_t* modbus_mapping_new(int nb_bits, int nb_input_bits,
                                     int nb_registers, int nb_input_registers)
{
    return modbus_mapping_new_start_address(
        0, nb_bits, 0, nb_input_bits, 0, nb_registers, 0, nb_input_registers);
}

/* Frees the 4 arrays */
void modbus_mapping_free(modbus_mapping_t *mb_mapping)
{
    if (mb_mapping == NULL) {
        return;
    }

    free(mb_mapping->tab_input_registers);
    free(mb_mapping->tab_registers);
    free(mb_mapping->tab_input_bits);
    free(mb_mapping->tab_bits);
    free(mb_mapping);
}

#ifndef HAVE_STRLCPY
/*
 * Function strlcpy was originally developed by
 * Todd C. Miller <Todd.Miller@courtesan.com> to simplify writing secure code.
 * See ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/strlcpy.3
 * for more information.
 *
 * Thank you Ulrich Drepper... not!
 *
 * Copy src to string dest of size dest_size.  At most dest_size-1 characters
 * will be copied.  Always NUL terminates (unless dest_size == 0).  Returns
 * strlen(src); if retval >= dest_size, truncation occurred.
 */
size_t strlcpy(char *dest, const char *src, size_t dest_size)
{
    register char *d = dest;
    register const char *s = src;
    register size_t n = dest_size;

    /* Copy as many bytes as will fit */
    if (n != 0 && --n != 0) {
        do {
            if ((*d++ = *s++) == 0)
                break;
        } while (--n != 0);
    }

    /* Not enough room in dest, add NUL and traverse rest of src */
    if (n == 0) {
        if (dest_size != 0)
            *d = '\0'; /* NUL-terminate dest */
        while (*s++)
            ;
    }

    return (s - src - 1); /* count does not include NUL */
}
#endif

LibModbus库实际工程应用

首先要下载安装VisualStudio2019或者VisualStudio2022,下载连接如下:

https://visualstudio.microsoft.com/zh-hans/downloads/icon-default.png?t=N7T8https://visualstudio.microsoft.com/zh-hans/downloads/

1、TIA中新建项目插入PLC 1214C,PLC属性设置如上所示IP地址为192.168.1.214。DB块中数据如下图所示,远程连接地址设置为192.168.1.106,不设置代表任何客户端都可连接。

2、编写ModbusTCP Server端程序,程序如下图所示。

3、Modbus通信数据地址隐射为M100,如下图所示数据长度映射600个字。

4、监控表中添加M100开始的数据监控表。如下图所示。

5、打开VisualStudio2019新建名为“MFCApplicationMultiLineTest”的MFC项目。将modbus.h头文件增加到项目MFCApplicationMultiLineTest.CPP文件中,如下图所示。

6、新建如下全局变量用于通信和线程管理。

#define LOOP              1
#define CLIENT_ID		  20
#define ADDRESS_START	  40001
#define ADDRESS_END		  40101
#define ADDRESS_MAX		  40201
#define ADDRESS_SUPERMAX  40301
#define PI                3.1415926


threadInfo  Info;
CMutex		cmtex;
BOOL		ThreadKiller = FALSE;
BOOL		ForKiller = FALSE;
HANDLE		hMyThread;
BOOL		ModbusThreadKiller = FALSE;
BOOL		ModbusLoop = FALSE;
BOOL        ServerConnectFailedFlag = FALSE;
int			nb_fail;
int			nb_loop;
int			addr;
int         addr_float = 100;
int         addr_float_supermax = 200;
int			nb;
int         sel;
int         flnb;
int         spnb;
int         nCount;
CString     strfloat;
modbus_t*   ctx;
uint8_t	*   tab_rq_bits;
uint8_t	*   tab_rp_bits;
uint16_t*   tab_rq_registers;
uint16_t*   tab_rp_registers;
uint16_t*   tab_rw_registers;
uint16_t*   tab_float_registers;
uint16_t*   tab_float_write_registers;
float   *   read_float_registers;
float   *   write_float_registers;
CRect       rcClientOld;
CRect       rcClientNew;

7、在OnInitDialog()初始化函数中加入如下代码。窗口打开后即可连接ModbusTCP服务器端。

    ctx = modbus_new_tcp("192.168.1.214", 502);
	
	modbus_set_debug(ctx, TRUE);
	modbus_set_slave(ctx, CLIENT_ID);
	modbus_set_response_timeout(ctx, 10, 1000000);
	if (modbus_connect(ctx) == -1)
	{
		fprintf(stderr, "Connection failed: %s\n", modbus_strerror(errno));
		printf("Connection failed: %s\n", modbus_strerror(errno));
		OutputDebugString(_T("Connection failed : % s\n"));
		AfxMessageBox(_T("Modbus Server Conneect Failed!"), MB_ICONINFORMATION);
		modbus_close(ctx);
		modbus_free(ctx);
		ServerConnectFailedFlag = TRUE;
		return -1;
	}
	else
	{
		AfxMessageBox(_T("Modbus Server Conneect Success!"), MB_ICONINFORMATION);
		ServerConnectFailedFlag = FALSE;
	}
	SetTimer(1, 1000, NULL);


	/*ModbusTCP通讯寄存器内存分配和内存空间初始化*/
	nb = ADDRESS_END - ADDRESS_START;//40001-4101为int
	flnb = ADDRESS_MAX - ADDRESS_END;//40101-40201为float
	spnb = ADDRESS_SUPERMAX - ADDRESS_MAX;//40201-40301为float

	tab_rq_bits = (uint8_t*)malloc(nb * sizeof(uint8_t));
	memset(tab_rq_bits,0, nb * sizeof(uint8_t));

	tab_rp_bits = (uint8_t*)malloc(nb * sizeof(uint8_t));
	memset(tab_rp_bits,0, nb * sizeof(uint8_t));

	tab_rq_registers = (uint16_t*)malloc(nb * sizeof(uint16_t));
	memset(tab_rq_registers,0, nb * sizeof(uint16_t));

	tab_rp_registers = (uint16_t*)malloc(nb * sizeof(uint16_t));
	memset(tab_rp_registers,0, nb * sizeof(uint16_t));

	tab_rw_registers = (uint16_t*)malloc(nb * sizeof(uint16_t));
	memset(tab_rw_registers,0, nb * sizeof(uint16_t));

	tab_float_registers = (uint16_t*)malloc(2 * flnb * sizeof(uint16_t));
	memset(tab_float_registers,0, 2 * flnb * sizeof(uint16_t));

	read_float_registers = (float*)malloc(flnb * sizeof(float));
	memset(read_float_registers,0, flnb * sizeof(float));

	write_float_registers = (float*)malloc((flnb) * sizeof(float));
	memset(write_float_registers,0, (flnb) * sizeof(float));

	tab_float_write_registers = (uint16_t*)malloc(2 * flnb * sizeof(uint16_t));
	memset(tab_float_write_registers,0, 2 * flnb * sizeof(uint16_t));

	//**********************************************************************
	
	GetClientRect(&rcGetold);
	OldClientPoint.x = rcGetold.right - rcGetold.left;
	OldClientPoint.y = rcGetold.bottom - rcGetold.top;

8、编写相关的通信线程函数ModBusCommunication(LPVOID* pParam)。Libmodbus库函数说明在Libmodbus官网有详细的说明。

UINT CMFCApplicationMultiLineTestDlg::ModBusCommunication(LPVOID* pParam)
{
	CMFCApplicationMultiLineTestDlg* modbustcp = (CMFCApplicationMultiLineTestDlg*)pParam;
	int rc=0;
	int n=0;
	int qw=0;
	int rq=0;
	int wf = 0;
	float rfloat = 0;
	//COLORREF RGB;
	BOOL sendmsg = FALSE;
	BOOL dspmsg  = FALSE;
	CWnd* thHwnd = AfxGetApp()->GetMainWnd();

	CSingleLock  modbuslock(&cmtex);
	modbuslock.Lock();
	if (ServerConnectFailedFlag == FALSE)
	{
	while (ModbusLoop==FALSE)
	{
		if(ServerConnectFailedFlag==FALSE)
		{ 
		if (ModbusThreadKiller)//最好让线程自行退出。
		{
			DWORD dwExitCode;
			GetExitCodeThread(modbustcp->ModbusTcpThread,&dwExitCode);
			AfxEndThread(dwExitCode,TRUE);
		}
		else
		{
			for (int q = 0; q <= 9; q++)
			{
				rc = modbus_write_bit(ctx, q, 0);
				if (rc != 1)
				{
					printf("Error modbus_write_bit(%d)\n", rc);
					printf("Address=%d,value=%d\n", q, 0);
					nb_fail++;
				}
				else
				{
					rc = modbus_read_bits(ctx, q, 1, tab_rq_bits);
					if (rc != 1 || tab_rq_bits[0] != 0)
					{
						printf("Error modbus_read_bit single(%d)\n", rc);
						printf("Address=%d", q);
						nb_fail++;
					}
				}
				Sleep(10);
			}
			for (qw = 0; qw <= 9; qw++)
			{
				rc = modbus_write_bit(ctx, qw, 1);//西门子S7-1200 I/O地址对应:0对应Q0.0,1对应Q0.1,8对应Q1.0
				if (rc != 1)
				{
					printf("Error modbus_write_bit(%d)\n", rc);
					printf("Address=%d,value=%d\n", qw, 1);
					nb_fail++;
				}
				else
				{
					rc = modbus_read_bits(ctx, qw, 1, tab_rq_bits);
					if (rc != 1 || tab_rq_bits[0] != 1)
					{
						printf("Error modbus_read_bit single(%d)\n", rc);
						printf("Address=%d", qw);
						nb_fail++;
					}
				}
				Sleep(10);
			}
			addr = 0;
			//addr=0对应西门子S7-1200 modbus寄存器40001,1对应40002、40001映射S7-1200 MW100,40002映射S7-1200 MW102,
			
			for (rq = 0; rq < nb; rq++)
			{
				tab_rq_registers[rq] = rq + 820 * sel;
			}
			//向S7-1200 MD300-MD696寄存器写入100个浮点数据,MD300对应modbus寄存器40201(200),MD696对应寄存器40301
			for (wf= 0;wf<flnb; wf++)
			{
				write_float_registers[wf] = (wf+sel)*(float)PI;
				modbus_set_float_dcba(write_float_registers[wf], tab_float_write_registers + 2 * wf);
			}
			rc = modbus_write_registers(ctx, addr,nb,tab_rq_registers);
			if (rc != nb)
			{
				printf("Error modbus_write_registers(%d)\n", rc);
				printf("Address=%d,nb=%d\n", addr,nb);
				nb_fail++;
				if (sendmsg == FALSE)
				{
					sendmsg = TRUE;
					::PostMessage(thHwnd->GetSafeHwnd(), WM_THREAD_MONITOR, WPARAM(sendmsg), 0);
				}
			}
			else
			{
				rc = modbus_read_registers(ctx,addr,nb,tab_rp_registers);
				if (rc != nb)
				{
					printf("Error modbus_read_registers(%d)\n", rc);
					printf("Address=%d,nb=%d\n", addr, nb);
					nb_fail++;
				}
				else 
				{
					for (int k = 0; k < nb; k++)
					{
						if (tab_rq_registers[k] != tab_rp_registers[k])
						{
							printf("Error modbus_read_registers(%d)\n",nb);
							printf("Address=%d,Value %d(0x%X!=%d (0x%X))\n",addr,tab_rq_registers[k],tab_rq_registers[k],tab_rp_registers[k],tab_rp_registers[k]);
							nb_fail++;
						}
					}
				}
			}			
			/*S7-1200浮点数据写入格式为dcba(100-200定义为float数据对应MD300-MD496,float数据需要分配2*flnb的存储空间)最大写入123个字
			写入前50个浮点数据(写入100个浮点数据必须分两次写入)*/
			rc = modbus_write_registers(ctx,addr_float,flnb,tab_float_write_registers);
			if (rc!=flnb)
			{
				printf("Error modbus_write_registers(%d)\n",flnb);
				printf("Address=%d,flnb=%d\n",addr_float,flnb);
				nb_fail++;

			}
			/*S7-1200浮点数据读取格式为dcba(100-200定义为float数据对应MD300-MD496,float数据需要分配2*flnb的存储空间)最大写入123个字
			写入后50个浮点数据(写入100个浮点数据必须分两次写入)*/
			rc = modbus_write_registers(ctx, addr_float_supermax, spnb, tab_float_write_registers+spnb);
			if (rc != spnb)
			{
				printf("Error modbus_write_registers(%d)\n", spnb);
				printf("Address=%d,flnb=%d\n", addr_float_supermax, spnb);
				nb_fail++;
			}
			/*S7-1200浮点数据读取格式为dcba(100-200定义为float数据对应MD300-MD496,float数据需要分配2*flnb的存储空间)最大读取125个字
			读取前50个浮点数据(读取数据必须分两次读取)*/
			rc = modbus_read_registers(ctx,addr_float,flnb,tab_float_registers);//读取前50个浮点
			if (rc!=flnb)
			{
				printf("Error modbus_read_registersF(%d)\n", rc);
				printf("Address=%d,nb=%d\n", addr_float, flnb);
				nb_fail++;
			}
			rc = modbus_read_registers(ctx, addr_float_supermax, spnb, tab_float_registers+spnb);//读取后50个浮点
			if (rc != spnb)
			{
				printf("error modbus_read_registersb(%d)\n", rc);
				printf("address=%d,nb=%d\n", addr_float_supermax, spnb);
				nb_fail++;
			}
			else
			{
				for (int lst = 0; lst < flnb; lst++)
				{   
					dspmsg = TRUE;
					read_float_registers[lst] = modbus_get_float_dcba(tab_float_registers+lst*2);
					rfloat = read_float_registers[lst];
					//Sleep(1);
					::PostMessage(thHwnd->GetSafeHwnd(), WM_SHOUWDATAFROMSIEMENS,WPARAM(dspmsg),LPARAM(lst));
					dspmsg = FALSE;
				}
				
				rfloat = read_float_registers[0];
				strfloat.Format(_T("%.4f"), rfloat);
				modbustcp->SetDlgItemText(IDC_EDITREADFLOAT,strfloat);
				strfloat.Format(_T("%.4f"), read_float_registers[1]);
				modbustcp->SetDlgItemText(IDC_EDITFREADLOAT4, strfloat);
				strfloat.Format(_T("%.4f"), read_float_registers[2]);
				modbustcp->SetDlgItemText(IDC_EDITREADFLOAT8, strfloat);
			}
			n++;
			modbustcp->SetDlgItemInt(IDC_EDITCACULATE, n);
		}
		}
	}
	}
	else
	{
		printf("Connection Failed: %s\n", modbus_strerror(errno));
		AfxMessageBox(_T("ModbusServer Connect Failed!"), MB_ICONINFORMATION);
	}
	n = 0;
	modbustcp->SetDlgItemInt(IDC_EDITCACULATE, n);
	modbustcp->ModbusTcpThread = NULL;
	sendmsg = FALSE;
	dspmsg  = FALSE;
	modbuslock.Unlock();
	return 0;
}

9、增加线程启动按钮,在按钮中启动通信线程完成通信。此例程为Libmodbus和S7-1200通信测试例程,写的比较早,没有严格封装。S7-200 PLC 的程序做了严格封装,后面在做介绍。

void CMFCApplicationMultiLineTestDlg::OnBnClickedButtonstart()
{
	
	if (ModbusTcpThread == NULL)
	{
		ModbusThreadKiller = FALSE;
		ModbusLoop = FALSE;
		UpdateData(TRUE);
		sel = m_select;
		SetDlgItemInt(IDC_EDITDSP,sel);
		UpdateData(FALSE);
		Sleep(50);
		ModbusTcpThread = AfxBeginThread((AFX_THREADPROC)ModBusCommunication, this);
	}
	else
	{
		AfxMessageBox(_T("ModbusTCP通讯线程已启动,无需重启!"), MB_ICONINFORMATION);
		
	}
}

10、启动MFC程序进行仿真。如下图所示。

11、在博图变量监控表中监控变量,如下图所示。对比发现数据准确无误。

12、合信M226ES与LibModbus之间的通信。合信M226ESModbusTCP协议客户端不需要编写程序,设置好IP地址即可,端口默认502。下面是M226ES Modbus地址映射(默认隐射)。

13、下面为测试的相关视频。

C++和S7-1200 Libmodbus 通信

开启你的Libmodbus之旅吧!

Logo

基于 Vue 的企业级 UI 组件库和中后台系统解决方案,为数万开发者服务。

更多推荐